Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

H24

giải phương trình 
sin^3x +2sin2x + 3cosx= 0

HP
14 tháng 8 2021 lúc 15:19

\(sin^3x+2sinx+3cosx=0\)

\(\Leftrightarrow sin^3x-sinx+3sinx+3cosx=0\)

\(\Leftrightarrow sinx\left(sin^2x-1\right)+3\left(sinx+cosx\right)=0\)

\(\Leftrightarrow-sinx.cosx+3\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\dfrac{1-\left(sinx+cosx\right)^2}{2}+3\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)^2-6\left(sinx+cosx\right)-1=0\)

\(\Leftrightarrow\left(sinx+cosx\right)^2-6\left(sinx+cosx\right)-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=3+\sqrt{10}\\sinx+cosx=3-\sqrt{10}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{3+\sqrt{10}}{\sqrt{2}}\left(l\right)\\sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{3-\sqrt{10}}{\sqrt{2}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=arcsin\left(\dfrac{3-\sqrt{10}}{\sqrt{2}}\right)+k2\pi\\x+\dfrac{\pi}{4}=\pi-arcsin\left(\dfrac{3-\sqrt{10}}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+arcsin\left(\dfrac{3-\sqrt{10}}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{3\pi}{4}-arcsin\left(\dfrac{3-\sqrt{10}}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
LC
Xem chi tiết
H24
Xem chi tiết
KR
Xem chi tiết
SN
Xem chi tiết
MA
Xem chi tiết
TH
Xem chi tiết