CD

🤔🤔 giải phương trình sau

H24
29 tháng 11 2021 lúc 11:32

2)\(\dfrac{x+5}{3x-6}-\dfrac{1}{2}=\dfrac{2x-3}{2x-4}\)

\(\dfrac{x+5}{3\left(x-2\right)}-\dfrac{1}{2}=\dfrac{2x-3}{2\left(x-2\right)}\)

\(\dfrac{2\left(x+5\right)}{3.2\left(x-2\right)}-\dfrac{3\left(x-2\right)}{2.3\left(x-2\right)}=\dfrac{3\left(2x-3\right)}{2.3\left(x-2\right)}\)

\(\dfrac{2x+10}{6\left(x-2\right)}-\dfrac{3x-6}{6\left(x-2\right)}=\dfrac{6x-9}{6\left(x-2\right)}\)

\(2x+10-\left(3x-6\right)=6x-9\)

\(2x+10-3x+6-6x+9=0\)

\(-7x+25=0\)

\(-7x=-25\)

\(x=\dfrac{25}{7}\)

3)\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)

\(\dfrac{1}{x-1}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x}{x^2+x+1}\)

\(\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(x^2+x+1-3x^2=2x^2-2x\)

\(x^2+x+1-3x^2-2x^2+2x=0\)

\(-4x^2+3x+1=0\)

\(-\left(4x^2-3x-1\right)=0\)

\(-\left(4x^2-4x+x-1\right)=0\)

\(-\left[\left(4x^2-4x\right)+\left(x-1\right)\right]=0\)

\(-\left[4x\left(x-1\right)+\left(x-1\right)\right]=0\)

\(-\left[\left(x-1\right)\left(4x+1\right)\right]=0\)

\(-\left(x-1\right)=0\) hay \(-\left(4x+1\right)=0\)

\(-x+1=0\) hay \(-4x-1=0\)

\(-x=-1\) hay \(-4x=1\)

\(x=1\) hay \(x=-\dfrac{1}{4}\)

Bình luận (0)

Các câu hỏi tương tự
TA
Xem chi tiết
CD
TT
Xem chi tiết
CD
CD
PB
Xem chi tiết
NA
Xem chi tiết
TB
Xem chi tiết
PB
Xem chi tiết