\(ĐKXĐ:x\ge-1\)
Ta có : \(\sqrt{x+1}=32x^3+48x^2+18x+1\)
\(\Leftrightarrow\sqrt{x+1}-1=32x^3+48x^2+18x\)
\(\Leftrightarrow\frac{\left(x+1\right)-1^2}{\sqrt{x+1}+1}=2x.\left(16x^2+24x+9\right)\)
\(\Leftrightarrow\frac{x}{\sqrt{x+1}+1}-2x\left(4x+3\right)^2=0\)
\(\Leftrightarrow x.\left[\frac{1}{\sqrt{x+1}+1}-2.\left(4x+3\right)^2\right]=0\) (*)
Với mọi \(x\inĐKXD\) thì \(2.\left(4x+3\right)^2>\frac{1}{\sqrt{x+1}+1}\) nên từ (*) suy ra :
\(x=0\) ( Thỏa mãn ĐKXĐ )
Vậy pt có nghiệm duy nhất \(x=0\)