Gỉa các phương trình sau :
a ) \(\frac{15x}{x^2+3x-4}=\frac{12}{x+4}+\frac{4}{x-1}+1\)
b) \(x\left(x-2\right)\left(x-1\right)\left(x+1\right)=24\)
- Giải các bất phương trình và các phương trình sau:
a. 1-\(\frac{2x-1}{9}\)= 3-\(\frac{3x-3}{12}\)
b. \(\frac{5x-2}{3}-\frac{2x^2-x}{2}>\frac{x\left(1-3x\right)}{3}+\frac{15x}{4}\)
c. \(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)
Giải phương trình sau
\(\frac{2x-1}{3x^2+7\:x+2}+\frac{3}{9x^2+15x+4}-\frac{2x+7}{3x^2-5x-12}=\frac{5}{x+2}\)
\(\frac{15x}{x^2+3x-4}-1=12\left(\frac{1}{x+4}+\frac{1}{3x-3}\right)\)
\(\frac{15x}{x^2+3x-4}\)-1=12\(\left(\frac{1}{x+4}+\frac{1}{3x-3}\right)\)
ĐẠI SỐ
1. Giải các phương trình sau :
a) \(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)
b) \(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)
c) \(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
2. Giải các bất phương trình sau :
a) \(5+\frac{x+4}{5}< x-\frac{x-2}{2}+\frac{x+3}{3}\)
b) \(x+1-\frac{x-1}{3}< \frac{2x+3}{2}+\frac{x}{3}+5\)
c) \(\frac{\left(3x-2\right)^2}{3}-\frac{\left(2x+1\right)^2}{3}\le x\left(x+1\right)\)
d) \(\frac{2x+3}{4}-\frac{x+1}{3}\ge\frac{1}{2}-\frac{3-x}{5}\)
bài 1. giải các phương trình sau
a / \(x =(4x+1) (\frac{3x+7}{3-5x}+1)=(x+4)(\frac{3x+7}{5x-3}-1)\)
b/ \(\left(x^2+3x+1\right)\left(\frac{4x-3}{3x+1}+2\right)=\left(4x+7\right)\left(\frac{4x-3}{3x+1}+2\right)\)1)
bài 2. giải phương trình sau bằng cách đưa về phương trình tích
a/\(\left(4x-5\right)^2-2\left(16x^2-25\right)=0\)
b/ \(\left(4x+3\right)^2=4\left(x^2-2x+1\right)\)
c. \(3x^3-3x^2-6x=0\)
cảm ơn mọi người nhiều lắm !
Giải bất phương trình và phương trình sau :
a, \(\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)
b, \(\frac{x^2-4-\left|x-2\right|}{2}=x\left(x-1\right)\)
Giải bất phương trình và phương trình sau :
\(a,\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)
\(b,\frac{x^2-4-\left|x-2\right|}{2}=x\left(x+1\right)\)