Violympic toán 9

TN

giải phương trình sau bằng phuo

 \(\left\{{}\begin{matrix}6\left(x+y\right)=8+2x-3y\\5\left(y-x\right)=5+3x+2y\end{matrix}\right.\)

NT
26 tháng 1 2021 lúc 15:08

Ta có: \(\left\{{}\begin{matrix}6\left(x+y\right)=8+2x-3y\\5\left(y-x\right)=5+3x+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x+6y=8+2x-3y\\5y-5x=5+3x+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-2x+6y+3y=8\\5y-5x-3x-2y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+9y=8\\-8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8x+18y=16\\-8x+3y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}21y=21\\4x+9y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+9=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x=8-9=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\\y=1\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{1}{4}\\y=1\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
CG
Xem chi tiết
NT
Xem chi tiết
TB
Xem chi tiết
WY
Xem chi tiết
NH
Xem chi tiết
TB
Xem chi tiết