Bài này phân tích thành nhân tử là xong, lưu ý là \(\frac{5}{2}\)là nghiệm của phương trình trên nên phương trình có nhân tử là\(2y-5\)
\(Pt\Leftrightarrow6y^2-15y+20y-50=0\Leftrightarrow3y\left(2y-5\right)+10\left(2y-5\right)=0\Leftrightarrow\left(2y-5\right)\left(3y+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2y-5\right)=0\\\left(3y+10\right)=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{5}{2}\\y=\frac{-10}{3}\end{cases}}}\)
Vậy phương trình có 2 nghiệm là \(y=\frac{5}{2}\)và \(y=\frac{-10}{3}\)
\(6y^2+5y-50=0\)
\(6y^2+5y-1-49=0\)
\(6y^2+5y-1=49\)
\(6y^2+6y-y-1=49\)
\(6y\left(y+1\right)-\left(y+1\right)=49\)
\(\left(y+1\right)\left(6y-1\right)=49=\left(-1\right)\left(-49\right)=1.49=7.7=\left(-7\right)\left(-7\right)\)
\(\text{Bạn xét từng trường hợp là được}\)
\(\text{bạn k làm được thì nhắn mình, mình làm cho ^_^}\)