TH1 : \(1+4x\ge0;7x-2\ge0\)
\(\Rightarrow\left|1+4x\right|-\left|7x-2\right|=1+4x-7x+2=0\)
\(\Leftrightarrow3-3x=0\)
\(\Leftrightarrow x=1\)(TM)
TH2 : \(1+4x\le0;7x-2\le0\)
\(\Rightarrow\left|1+4x\right|-\left|7x-2\right|=-1-4x+7x-2=0\)
\(\Leftrightarrow3x-3=0\)
\(\Leftrightarrow x=1\)(loại) Bạn thử x = 1 vào 1 + 4x nếu 1 + 4x \(\le\)0 thì lấy còn \(\ge\)0 thì loại
TH3 : \(1+4x\ge0;7x-2\le0\)
\(\Rightarrow\left|1+4x\right|-\left|7x-2\right|=1+4x+7x-2=0\)
\(\Leftrightarrow11x-1=0\)
\(\Leftrightarrow x=\frac{1}{11}\)(TM)
TH4 : \(1+4x\le0;7x-2\ge0\)
\(\Rightarrow\left|1+4x\right|-\left|7x-2\right|=-1-4x-7x+2=0\)
\(\Leftrightarrow1-11x=0\)
\(\Leftrightarrow x=\frac{1}{11}\)(loại)
Vậy \(S=\left\{\frac{1}{11};1\right\}\)
|1+4x| - |7x-2| =0 (*)
ta có: +) 1+4x=0 =>4x =-1 =>x=-1/4
+)7x-2=0 =>7x=2 =>x =7/2
=> ta có bảng sau:
x -1/4 7/2
1+4x - 0 + | +
7x-2 - | - 0 +
TH 1: x <-1/4 => 1+4x <0 =>|1+4x|=-(1+4x)
7x-2 <0 |7x-2|=-(7x-2)
(*) =>-(1+4x)+(7x-2)=0
=>-1-4x+7x-2=0
=>-3+3x=0
=>3x=3
=>x=1 ( không t/m x < -1/4 )
TH 2: -1/4 _< x _< 7/2 => 1+4x >0 =>|1+4x|=1+4x
7x-2 <0 |7x-2|=-(7x-2)
(*) =>1+4x+(7x-2)=0
=>1+4x+7x-2=0
=>11x-1 =0
=>11x=1
=>x=1/11 ( t/m -1/4 _< x <7/2)
TH 3: 7/2 > x =>1+4x >0 => |1+4x|=1+4x
7x-2 >0 |7x-2|=7x-2
(*) => 1+4x-(7x-2)=0
=>1+4x-7x+2=0
=>3-3x=0
=>3x =3
=>x=1 ( t/m 7/2 >x)
từ 3 trường hợp trên =>x { 1/11 ;1}