ta có : \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)
<=>\(x^3+x^2+x+1=4y^2+4y+1\)
<=>\(\left(x^2+1\right)\left(x+1\right)=\left(2y+1\right)^2\)
ta thấy : \(x^2+1\) và \(x+1\) cùng tính chẵn lẻ.Mà \(\left(2y+1\right)^2\) là bình phương của 1 số lẻ nên \(x^2+1\) và \(x+1\) cùng lẻ => x chẵn
mặt khác: tích \(\left(x^2+1\right)\left(x+1\right)\) là 1 số chính phương lẻ =>\(x^2+1=x+1\)
<=>\(x^2=x\) <=> x(x-1)=0 \(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
mà x là số chẵn nên x=0 => 4y(y+1)=0 \(\Rightarrow\orbr{\begin{cases}y=0\\y+1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}}\)
vậy nghiệm của phương trình là : (x;y)={ (0;0) ; (0;-1)}
Tại sao lại suy ra x2+1=x+1. Mình không hiểu chỗ đó giải thích cho mình với
Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
Trần Hà Lan:Vì h 2 số đấy là 1 scp nên nó phải giống nhau .VD:a*a=a^2
Võ Thị Quỳnh Giang sao bạn ra dc x+1=x^+1 giả sử x+1=3,x^2+1=27 thì 27*3=81=9^2 đấy thôi