H24

Giải phương trình nghiệm nguyên dương:  \(\frac{5}{x}+\frac{5}{y}=1\)

H24
3 tháng 10 2018 lúc 9:43

\(\frac{5}{x}+\frac{5}{y}=1\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)

Vai trò của x,y là bình đẳng,nên ta giả sử \(x\ge y\). Dùng BĐT để giới hạn khoảng giá trị của số nhỏ hơn (y)

Hiển nhiên ta có: \(\frac{1}{y}<\frac{1}{5}\) nên y>5. Mặt khác,do \(x\ge y\ge1\) nên \(\frac{1}{x}\le\frac{1}{y}\). Do đó:

\(\frac{1}{5}=\frac{1}{x}+\frac{1}{y}\le\frac{1}{y}+\frac{1}{y}=\frac{2}{y}\).

\(\frac{2}{y}\ge\frac{1}{5}\) nên \(10\ge y\). Vậy \(6\le y\le10\). Ta có:

Với y = 6 thì \(\frac{1}{x\ }=\frac{1}{5}-\frac{1}{6}=\frac{1}{30}\Leftrightarrow x=30\)

Với y = 7 thì \(\frac{1}{x}=\frac{1}{5}-\frac{1}{7}=\frac{2}{35}\Leftrightarrow x=35\) (loại)

Với y = 8 thì \(\frac{1}{x}=\frac{1}{5}-\frac{1}{8}=\frac{3}{40}\Leftrightarrow x=40\) (loại)

Với y = 9 thì \(\frac{1}{x}=\frac{1}{5}-\frac{1}{9}=\frac{4}{45}\Leftrightarrow x=45\) (loại)

Với y = 10 thì \(\frac{1}{x}=\frac{1}{5}-\frac{1}{10}=\frac{1}{10}\Leftrightarrow x=10\)

Vậy x=30,y=6. Do vai trò bình đẳng nên ta có thêm 1 giá trị khác: x=6,y=30
và x=10,y=10

Bình luận (0)
H24
3 tháng 10 2018 lúc 9:48

(đã xóa câu trả lời)

Bình luận (0)
H24
3 tháng 10 2018 lúc 9:49

:v,mình copy lại mà nó không ra đúng như ý,nên bạn vào đây cho dễ xem vậy: Bài post của Nguyen thi minh ngoc | Bingbe

Bình luận (0)

Các câu hỏi tương tự
NQ
Xem chi tiết
LT
Xem chi tiết
KK
Xem chi tiết
NB
Xem chi tiết
N2
Xem chi tiết
CH
Xem chi tiết
GN
Xem chi tiết
PH
Xem chi tiết
FA
Xem chi tiết