NV

Giải phương trình \(\log_{5-x^2}\dfrac{3\sin2x-2\sin x}{\sin2x.\cos x}=\log_{5-x^2}2\)

NT
16 tháng 8 lúc 23:47

\(\log_{5-x^2}\dfrac{3sin2x-2sinx}{sin2x.cosx}=\)\(\log_{5-x^2}2\left(1\right)\) 

ĐKXĐ : \(-\sqrt{5}< x< \sqrt{5}\)

\(\left(1\right)\Leftrightarrow\dfrac{3sin2x-2sinx}{sin2x.cosx}=2\) \(\left(x\ne k\pi;x\ne\dfrac{\pi}{2}+k\pi;k\in Z\right)\)

\(\Leftrightarrow\dfrac{6sinxcosx-2sinx}{2sinx.cos^2x}=2\)

\(\Leftrightarrow\dfrac{2sinx\left(3cosx-1\right)}{2sinx.cos^2x}=2\)

\(\Leftrightarrow3cosx-1=2cos^2x\)

\(\Leftrightarrow2cos^2x-3cosx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1=cos0\\cosx=\dfrac{1}{2}=cos\dfrac{\pi}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\left(k\in Z\right)\) thỏa mãn \(-\sqrt{5}< x< \sqrt{5}\)

 

Bình luận (0)