§1. Đại cương về phương trình

NH

Giải phương trình :

          \(\left(x+5\right)^4+\left(x+3\right)^4=16\)

DT
9 tháng 5 2016 lúc 13:05

Đặt t=\(x+\frac{5+3}{2}=x+4\)

PT trên trở thành:

(t+1)4+(t-1)4=16

<=>2t4+12t2+2=16

<=>2t4+12t2-14=0(1)

Đặt y=t2(y\(\ge\) 0)=> PT(1) trở thành: 2y2+12y-14=0(2)

Ta có: a+b+c=2+12-14=0

=>PT(2) có 2 nghiệm phân biệt: \(y_1=1\left(nhận\right);y_2=-7\left(loại\right)\)

y=1 =>t2=1 =>t=1 hoặc t=-1

Với t=1 =>x=-3 

Với t=-1 =>x=-5

Vậy S={-3;-5}

Bình luận (0)
TA
9 tháng 5 2016 lúc 11:38

Đặt \(t=x+4\), phương trình ban đầu trở thành :

\(\left(t+1\right)^4+\left(t-1\right)^4=16\Leftrightarrow t^4+6t^2-7=0\)

                                     \(\Leftrightarrow\left[\begin{array}{nghiempt}t^2=1\\t^2=-7\end{array}\right.\)

Phương trình \(t^2=-7\) vô nghiệm

Phương trình \(t^2=1\) cho ta 2 nghiệm \(t=1;t=-1\) do đó :

Phương trình ban đầu \(\Leftrightarrow\left[\begin{array}{nghiempt}x+4=-1\\x+4=1\end{array}\right.\)

                                 \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=-3\end{array}\right.\)

Bình luận (0)

Các câu hỏi tương tự
PA
Xem chi tiết
HT
Xem chi tiết
VH
Xem chi tiết
NL
Xem chi tiết
NA
Xem chi tiết
TT
Xem chi tiết
PT
Xem chi tiết
NA
Xem chi tiết
PT
Xem chi tiết