Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
giải phương trình:\(\left|x-2016\right|^{2016}+\left|x-2017\right|^{2017}=1\)
giải phương trình:\(\left|x-2016\right|^{2016}+\left|x-2017\right|^{2017}=1\)
giải phương trình : \(\left|x-2016\right|^{2016}+\left|x-2017\right|^{2017}=1\)
giải phương trình sau:
\(\left|x-2015\right|^{2016}+\left|x-2016\right|^{2017}=1\)
Giải phương trình nghiệm nguyên
a) \(x^2+6x+17^{91}=2016^{2020}\)
b) \(x^2+2017^{2019}=2016\left(y-1\right)^2\)
c) \(x^2-2x=2017^{2017}\)
d) \(x^2+4x=2018^{10}\)
Mọi người giải giúp em với em cảm ơn
Giải phương trình nghiệm nguyên
a) \(x^2=2y^2-8y+3\)
b) \(x^2+y^2-4x+4y=1\)
c) \(x^2+6x+17^{91}=2016^{2020}\)
d) \(x^2+2017^{2019}=2016\left(y-1\right)^2\)
e) \(x^2-2x=2017^{2017}\)
1) cho A=\(\frac{\left(x+2012\right)^2+2\left(x+2013\right)\left(x-2013\right)+\left(x-2012\right)^2}{\left(x^2-2012\right)+\left(x^2-2013\right)}\)
Tính giá trị A tại x=20162017
a)giải phương trình sau
\(\left(3x^2+x-2016\right)^2+4\left(x^2+506x-2017\right)^2=4\left(3x^2+x-2016\right).\left(x^2+506x-2017\right)\)
b) tìm đa thức f(x) biết rằng f(x) chia cho x+3 duw, f(x) chia cho x-2duw 6, f(x) chia cho x2+x-6 được thương là 2x và còm dư
cho hai đa thức với hệ số nguyên f1(x), f2(x) thoả mãn \(..f\left(x\right)=f_1\left(x^3\right)+x\cdot f_2\left(x^3\right)..\)chia hết cho \(^{x^2+x+1}\).
Chứng minh rằng \(ƯSCLN\left(f1\left(2017\right),f2\left(2017\right)\right)\ge2016...???\)
THẦY MÌNH GỢI Ý nè chứng minh f1(x) và f2(x) chia hết cho x-1 dựa vào x^3-1 chia hết cho x-1
từ đó suy ra f1(2017) và f2(2017) chia hết cho 2016 => đpcm CHỨNG MINH HỘ NHA MK KO BIẾT LÀM