\(\frac{x^2-4x+1}{x+1}+2=\frac{x^2-5x+1}{2x+1}\)
\(\Leftrightarrow\frac{\left(x^2-4x+1\right)\left(2x+1\right)+2\left(x+1\right)\left(2x+1\right)}{\left(x+1\right)\left(2x+1\right)}=\frac{\left(x^2-5x+1\right)\left(x+1\right)}{\left(2x+1\right)\left(x+1\right)}\)
\(\Leftrightarrow\frac{2x^3+x^2-8x^2-4x+2x+1+2\left(2x^2+x+2x+1\right)}{\left(x+1\right)\left(2x+1\right)}=\frac{x^3+x^2-5x^2-5x+x+1}{\left(2x+1\right)\left(x+1\right)}\)
\(\Rightarrow2x^3-7x^2-2x+1+4x^2+2x+4x+2=x^3-4x^2-4x+1\)
\(\Leftrightarrow2x^3-3x^2+4x+3-x^3+4x^2+4x-1=0\)
\(\Leftrightarrow x^3+x^2+8x-2=0\)