\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne30\\x\ne24\end{cases}}\)
Ta có \(\frac{60}{\frac{120}{x}-4}+\frac{60}{\frac{120}{x}-5}=x\)
\(\Leftrightarrow\frac{60}{\frac{120-4x}{x}}+\frac{60}{\frac{120-5x}{x}}=x\)
\(\Leftrightarrow\frac{60x}{120-4x}+\frac{60x}{120-5x}=x\)
\(\Leftrightarrow\frac{60}{120-4x}+\frac{60}{120-5x}=1\left(Do\text{ }x\ne0\right)\)
\(\Leftrightarrow\frac{15}{30-x}=1-\frac{12}{24-x}\)
\(\Leftrightarrow\frac{15}{30-x}=\frac{24-x-12}{24-x}\)
\(\Leftrightarrow\frac{15}{30-x}=\frac{12-x}{24-x}\)
\(\Leftrightarrow360-15x=\left(12-x\right)\left(30-x\right)\)
\(\Leftrightarrow360-15x=360-42x+x^2\)
\(\Leftrightarrow x^2-27x=0\)
\(\Leftrightarrow x\left(x-27\right)=0\)
\(\Leftrightarrow x=27\left(Tm\text{ }ĐKXĐ\right)\)