Giải phương trình : \(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}=\frac{1}{6}\)
Giải phương trình
\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}=\frac{1}{6}\)
giải phương trình:\(\frac{2x}{6x^2-x+3}+\frac{5x}{4x^2+5x+2}+\frac{x}{2x^2+3x+1}=\frac{1}{3}\)
b, \(\frac{1}{x+1}+\frac{2}{x+2}+\frac{1}{x+3}=\frac{1}{x+4}+\frac{2}{x+5}+\frac{1}{x+6}\)
c, \(x^2+\frac{9x^2}{\left(x+3\right)^2}=7\)
d,\(\frac{1}{x-1}+\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x+2}+\frac{1}{x+3}=0\)
e,\(\frac{9x}{x^2-2x+3}=\frac{5x^2+9x+15}{x^2+3x+3}\)
giải phương trình:
\(\frac{9x+12}{x^3-64}-\frac{1}{x^2+4x+16}=\frac{1}{x-4}\)
2. \(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x-2}=1\)
cần gấp một lời giải cụ thể. ngắn cũng đc mà phải giải thích <3
2. Giải PT:
a) \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}.\)
b) \(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4.\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0.\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6.\)
Không cần các bạn giải quyết hết, nhé! GẤP, GẤP, GẤP
Giải các phương trình sau:
a) x4 + 2x3 - 39x2 - 4x + 4 = 0
b) (x + 4)4 + (x + 2)2 = 34
c) \(\frac{2x}{3x^2-5x+2}+\frac{13x}{3x^2+x+2}=6\)
d) \(\frac{x^4+3x^2+1}{x^3+x^2-x}=3\)
e) \(\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}=15\)
f) \(\left(\frac{x+1}{x-2}\right)^2+\frac{x-1}{x+3}=12\left(\frac{x-2}{x+3}\right)^2\)
g) \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+7x+6}=6\)
giải hệ phương trình\(\hept{\begin{cases}x+y=-6\\\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}=2\end{cases}}\)
giải phương trình \(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
giải phương trình vô tỉ
a) \(\frac{3}{4}\sqrt{x}-\sqrt{9x}+5=\frac{1}{4}\sqrt{9x}\)
b) \(\sqrt{3-x}-\sqrt{27-9x}+1,25\sqrt{48-16x}=6\)
c) \(\sqrt{9x^2+12x+4}=4\)
d) \(\frac{1}{3}\sqrt{x-1}+2\sqrt{4x-4}-12\sqrt{\frac{x-1}{25}}=\frac{29}{15}\)
Giải các phương trình sau:
1) \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}+1}=\sqrt{5}.\left(\frac{1}{\sqrt{6x-1}}+\frac{1}{\sqrt{9x-4}}\right).\)
2) \(\frac{1}{\sqrt{3}x}+\frac{1}{\sqrt{9x-3}}=\frac{1}{\sqrt{5x-1}}+\frac{1}{\sqrt{7x-2}}\)
3) \(\hept{\begin{cases}x^3-y^3-z^3=3xyz\\x^3=2\left(y+z\right)\end{cases}}\)
4) \(\hept{\begin{cases}x^3+y^3+2xyz=z^3\\z^3=\left(2x+2y\right)^3\end{cases}}\)