Violympic toán 9

DT

Giải phương trình :

\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x}}=1\)

NL
18 tháng 2 2020 lúc 12:15

ĐKXĐ: \(x\ge0\)

Nhân cả tử và mẫu của từng phân số với liên hợp của chúng (do các liên hợp này luôn dương) và rút gọn ta được:

\(\sqrt{x+3}-\sqrt{x+2}+\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+1}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+3}=1+\sqrt{x}\)

\(\Leftrightarrow x+3=x+1+2\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}=1\Rightarrow x=1\)

Bình luận (0)
 Khách vãng lai đã xóa
TH
30 tháng 9 2020 lúc 22:30

Làm như này dễ hiểu hơn (áp dụng công thức của Nguyễn Việt Lâm thôi)

\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x}}=1\) (ĐKXĐ: x \(\ge\) 0)

\(\Leftrightarrow\) \(\frac{1}{\sqrt{x+3}}-\frac{1}{\sqrt{x+2}}+\frac{1}{\sqrt{x+2}}-\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{x+1}}-\frac{1}{\sqrt{x}}=1\)

\(\Leftrightarrow\) \(\frac{1}{\sqrt{x+3}}-\frac{1}{\sqrt{x}}=1\)

\(\Leftrightarrow\) \(\sqrt{x+3}-\sqrt{x}\) = 1

\(\Leftrightarrow\) \(\sqrt{x+3}=1+\sqrt{x}\)

\(\Leftrightarrow\) x + 3 = 1 + 2\(\sqrt{x}\) + x (Bình phương 2 vế lên)

\(\Leftrightarrow\) 2\(\sqrt{x}\) = 2

\(\Leftrightarrow\) \(\sqrt{x}\) = 1

\(\Leftrightarrow\) x = 1 (TMĐK)

Vậy S = {1}

Chúc bn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
TT
Xem chi tiết
DN
Xem chi tiết
NH
Xem chi tiết
KZ
Xem chi tiết
PM
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
PB
Xem chi tiết