Ôn tập cuối năm phần số học

QL

Giải phương trình:

a) \(x^4+2x^3+5x^2+4x-12=0\)

b) \(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}=\dfrac{1}{6}\)

AH
19 tháng 11 2017 lúc 22:53

Lời giải:

a)

\(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^3(x-1)+3x^2(x-1)+8x(x-1)+12(x-1)=0\)

\(\Leftrightarrow (x-1)(x^3+3x^2+8x+12)=0\)

\(\Leftrightarrow (x-1)[x^2(x+2)+x(x+2)+6(x+2)]=0\)

\(\Leftrightarrow (x-1)(x+2)(x^2+x+6)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x^2+x+6=0\left(1\right)\end{matrix}\right.\)

Đối với (1): \(\Leftrightarrow (x+\frac{1}{2})^2+\frac{23}{4}=0\)

(vô lý vì \((x+\frac{1}{2})^2+\frac{23}{4}\geq \frac{23}{4}>0\) )

Do đó \(x\in\left\{-2;1\right\}\)

b) ĐKXĐ: ......

\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}=\frac{1}{6}\)

\(\Leftrightarrow \frac{1}{(x+1)(x+3)}+\frac{1}{(x+3)(x+5)}=\frac{1}{6}\)

\(\Leftrightarrow \frac{(x+5)+(x+1)}{(x+1)(x+3)(x+5)}=\frac{1}{6}\)

\(\Leftrightarrow \frac{2(x+3)}{(x+1)(x+3)(x+5)}=\frac{1}{6}\Leftrightarrow \frac{2}{(x+1)(x+5)}=\frac{1}{6}\)

\(\Leftrightarrow (x+1)(x+5)=12\)

\(\Leftrightarrow x^2+6x-7=0\)

\(\Leftrightarrow (x-1)(x+7)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\) (thỏa mãn đkxđ)

Vậy \(x\in\left\{-7;1\right\}\)

Bình luận (0)

Các câu hỏi tương tự
2S
Xem chi tiết
SK
Xem chi tiết
AH
Xem chi tiết
AH
Xem chi tiết
TH
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
ON
Xem chi tiết
NL
Xem chi tiết