Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giải phương trình
a)\(\sqrt{x+4}+\sqrt{6-x}=\:x^2-10x+27\)
b)\(\sqrt{2x+1}+\sqrt{17-2x}=x+1\)
Giải phương trình
a)\(\sqrt{x+4}+\sqrt{6-x}=\:x^2-10x+27\)
b)\(\sqrt{2x+1}+\sqrt{17-2x}=x+1\)
EM CẦN GẤP Ạ
1. Giải phương trình:
1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)
3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)
4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)
5/ \(x^2-\left(m+1\right)x+2m-6=0\)
6/ \(615+x^2=2^y\)
2.
a, Cho các số dương a,b thoả mãn \(a+b=2ab\).
Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).
b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).
Tính GTNN và GTLN của biểu thức \(P=x+y\).
3. Cho hàm số \(y=\left(m+3\right)x+2m-10\) có đồ thị đường thẳng (d), hàm số \(y=\left(m-4\right)x-2m-8\) có đồ thị đường thẳng (d2) (m là tham số, \(m\ne-3\) và \(m\ne4\)). Trên mặt phẳng toạ độ Oxy, (d) cắt trục hoành tại điểm A, (d2) cắt trục hoành tại điểm B, (d) cắt (d2) tại điểm C nằm trên trục tung. Chứng minh hệ thức \(\dfrac{OA}{BC}=\dfrac{OB}{AC}\).
4. Cho 2 đường tròn (O) và (I) cắt nhau tại dây AB, chứng minh rằng \(\Delta OAI=\Delta OBI\).
Giải phương trình:
a) \(\sqrt{x+3-4\sqrt{x+1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
b) \(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\)
c) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}=2\sqrt{2}\)
d) \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
e) \(\sqrt{2x+1}+\sqrt{17-2x}=x^4-8x^3+17x^2-8x+22\)
f) \(\sqrt{3x^2+12x+16}+\sqrt{y^2-4y+13}=5\)
g) \(\sqrt{x+x^2}+\sqrt{x-x^2}=x+1\)
ai lmmm giúp tui ikkk
Giải phương trình:
a) \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
b)\(x+\sqrt{x+4}=\sqrt{2x^2-10x+17}+3\)
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
Giải phương trình
`sqrt(x-3) + sqrt(5-x) = 2`
`sqrt(x-4)+sqrt(6-x) = x^2 -10x+27`
a, rút gọn biểu thức: A= \(\sqrt{12}-\sqrt{27}+\sqrt{4+2\sqrt{3}}\)
b, giải phương trình: x2-2x-4=0
c, giải hệ phương trình: \(\left\{{}\begin{matrix}2x-y=5\\x+3y=-1\end{matrix}\right.\)
Giải phương trình
a)
\(\sqrt{x-2}+\sqrt{10-x}=x^2-12x+52\)
b)\(\sqrt{2x-1}+\sqrt{19-2x}=\frac{6}{-x^2+10x-24}\)