PC

giai phuong trinh 

2x^2 + 3xy + y^2 = 0

H24
16 tháng 7 2019 lúc 10:38

\(2x^2+3xy+y^2=0\)

\(\Rightarrow2x^2+2xy+xy+y^2=0\)

\(\Rightarrow2x\left(x+y\right)+y\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(2x+y\right)=0\)

Bình luận (0)
NP
16 tháng 7 2019 lúc 10:40

     \(2x^2+3xy+y^2=0\)

\(\Leftrightarrow x^2+x^2+2xy+xy+y^2=0\)

\(\Leftrightarrow\left(x^2+xy\right)+\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow x\left(x+y\right)+\left(x+y\right)^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(2x+y\right)=0\)

Hoặc \(x+y=0\Leftrightarrow x=-y\left(1\right)\)

Hoặc \(2x+y=0\left(2\right)\)

Thế (1) vào (2) ta có: 

\(-2y+y=0\)

\(\Leftrightarrow-y=0\Leftrightarrow y=0\)

\(\Leftrightarrow x=0\left(\text{vì x = -y}\right)\)

Vậy \(x=y=0\)

Bình luận (0)
H24
16 tháng 7 2019 lúc 10:47

Ta có : \(2x^2+3xy+y^2=2x^2+2xy+xy+y^2=2x\left(x+y\right)+y\left(x+y\right)=\left(2x+y\right)\left(x+y\right)=0\)

\(=>\orbr{\begin{cases}2x+y=0\\x+y=0\end{cases}=>\orbr{\begin{cases}x=-\frac{y}{2}\\x=-y\end{cases}}}\)

Vậy x=-y hoặc x=-y/2 với mọi x thì 2x^2+3xy+y^2

Bình luận (0)

Các câu hỏi tương tự
PC
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
SX
Xem chi tiết
PT
Xem chi tiết