Giải phương trình :
\(x+1=\sqrt{2\left(x+1\right)+2\sqrt{2\left(x+1\right)+2\sqrt{4\left(x+1\right)}}}\)
Giải phương trình :
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{2}\right)}=3x-1\) .
Giải phương trình: \(\sqrt{x\left(x+1\right)\left(x+2\right)}=x^2-x-4\)
Giải phương trình: \(\hept{\begin{cases}\frac{x^3+x^2+x}{x+1}=\left(y+3\right)\sqrt{\left(x+1\right)\left(y+2\right)}\\3x^2-8x-3=4\left(x+1\right)\sqrt{y+2}\end{cases}}\)
Giải bất phương trình:
\(\left(x^2-2x\right)^2-2\left(x-1\right)^2-1\ge0\) (1)
Giải phương trình :
\(\sqrt{x\left(3x+1\right)}-\sqrt{x\left(x-1\right)}=2\sqrt{x^2}\)
Giải phương trình :
\(\left(\sqrt{x^2+1}+x\right)^5+\left(\sqrt{x^2+1}-x\right)^5=123\)
Giải phương trình :
\(\frac{1}{\left(2x-1\right)^2}+\frac{1}{\left(3x+1\right)^2}=\frac{5}{4\left(x+2\right)^2}\)
giải các phương trình sau:
a.(2x-1)(x-1)(x-3)(2x+3)= -9
b.\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)