Sửa đề: \(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}ĐK:x\ne1\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Rightarrow x^2+x+1+2x-2=3x^2\)
\(\Leftrightarrow-2x^2+3x-1=0\)
\(\Leftrightarrow-\left(2x-1\right)\left(x-1\right)=0\Leftrightarrow x=\frac{1}{2};1\)
Vậy tập nghiệm của phương trình là S = { 1/2 ; 1 }