NN

giải hpt: \(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}}\)

KN
18 tháng 8 2020 lúc 21:01

Hệ phương trình đã cho tương đương với:

\(\hept{\begin{cases}x^3-y^3=2\left(4x+y\right)\\x^2-3y^2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}3x^3-3y^3=6\left(4x+y\right)\left(1\right)\\x^2-2y^2=6\left(2\right)\end{cases}}\)

Thay (2) và (1), ta được: \(3x^3-3y^3=\left(x^2-2y^2\right)\left(4x+y\right)\Leftrightarrow x^3+x^2y-12xy^2=0\)(*)

- Xét x = 0 thì ta dễ thấy không thỏa mãn

- Xét \(x\ne0\)ta chia cả hai vế của phương trình (*) cho x3, ta được\(1+\left(\frac{y}{x}\right)-12\left(\frac{y}{x}\right)^2=0\)

Đặt \(\frac{y}{x}=s\), ta được: \(-12s^2+s+1=0\Leftrightarrow\left(1-3s\right)\left(4s+1\right)=0\Leftrightarrow\orbr{\begin{cases}s=\frac{1}{3}\\s=-\frac{1}{4}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3y\\x=-4y\end{cases}}\)

Với x = 3y thay vào (2), ta được: \(9y^2-3y^2=6\Leftrightarrow6y^2=6\Leftrightarrow y=\pm1\Rightarrow x=\pm3\)

Với x = -4y thay vào (2) ta được:\(16y^2-3y^2=6\Leftrightarrow13y^2=6\Leftrightarrow y=\pm\sqrt{\frac{6}{13}}\Rightarrow x=\mp\sqrt{\frac{96}{13}}\)

Vậy tập nghiệm của hệ phương trình là \(\left\{\left(1;3\right);\left(-1;-3\right);\left(\sqrt{\frac{6}{13}};-\sqrt{\frac{96}{13}}\right);\left(-\sqrt{\frac{3}{16}};\sqrt{\frac{96}{13}}\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
18 tháng 8 2020 lúc 21:08

Để ý rằng nếu nhân chéo 2 phương trình của hệ ta có

\(6\left(x^3+y^3\right)=\left(8x+2y\right)\left(x^2+3y^2\right)\) đây là hệ phương trình đẳng cấp bậc 3, Từ đó ta giải như sau

Vì x=0 không là nghiệm của hệ nên ta đặt y=tx khi đó hệ trở thành

\(\hept{\begin{cases}x^3-8x=t^3x^3+2tx\\x^2-3=3\left(t^2x^2+1\right)\end{cases}\Leftrightarrow\hept{\begin{cases}x^2\left(1-t^3\right)=2t+8\\x^2\left(1-3t^2\right)=6\end{cases}}\Rightarrow\frac{1-t^3}{1-3t^2}=\frac{t+4}{3}}\)

\(\Leftrightarrow3\left(1-t^3\right)=\left(t+4\right)\left(1-3t^2\right)\Leftrightarrow12t^2-t-1=0\Leftrightarrow\orbr{\begin{cases}t=\frac{1}{3}\\t=-\frac{1}{4}\end{cases}}\)

\(t=\frac{1}{3}\Rightarrow\hept{\begin{cases}x^2\left(1-3t^2\right)=6\\y=\frac{x}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm3\\y=\pm1\end{cases}}}\)

*\(t=-\frac{1}{4}\Rightarrow\hept{\begin{cases}x=\pm\frac{4\sqrt{78}}{13}\\y=\mp\frac{\sqrt{78}}{13}\end{cases}}\)

Vậy hệ phương trình có các cặp nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(-3;-1\right);\left(\frac{4\sqrt{78}}{13};\frac{\sqrt{78}}{13}\right);\left(-\frac{4\sqrt{78}}{13};-\frac{\sqrt{78}}{13}\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
KS
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
TA
Xem chi tiết
TB
Xem chi tiết