PK

Giải hpt :

\(\hept{\begin{cases}x^2+y^2+xy=1\\x^3+y^3=x+3y\end{cases}}\)

CH
20 tháng 9 2017 lúc 9:34

Do \(x^2+y^2+xy=1\Rightarrow x-y=\left(x-y\right)\left(x^2+y^2+xy\right)=x^3-y^3\)

Tức là ta có hệ mới \(\hept{\begin{cases}x^3-y^3=x-y\\x^3+y^3=x+3y\end{cases}}\)

Trừ từng vế của phương trình dưới cho phương trình trên, ta có \(2y^3=4y\Rightarrow2y\left(y^2-2\right)=0\Rightarrow\orbr{\begin{cases}y=0\\y=\sqrt{2}\vee y=-\sqrt{2}\end{cases}}\)

Nếu y = 0 thì \(x^2=1\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Nếu \(y=\sqrt{2}\) thì \(x^2+2+\sqrt{2}x=1\Rightarrow x^2+\sqrt{2}x+1=0\) (Vô nghiệm)

Nếu \(y=-\sqrt{2}\) thì \(x^2+2-\sqrt{2}x=1\Rightarrow x^2-\sqrt{2}x+1=0\) (Vô nghiệm)

Tóm lại phương trình có 2 nghiệm \(\left(1;0\right)\) và \(\left(-1;0\right).\)

Bình luận (0)

Các câu hỏi tương tự
LM
Xem chi tiết
LM
Xem chi tiết
TA
Xem chi tiết
PA
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
LC
Xem chi tiết
DC
Xem chi tiết
NL
Xem chi tiết