\(\hept{\begin{cases}x^2-y^2=1-xy\\x^2+y^2=3xy+11\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-y^2+xy=1\\x^2+y^2-3xy=11\end{cases}}\)
\(\Rightarrow x^2+y^2-3xy=11x^2-11y^2+11xy\)
\(\Leftrightarrow10x^2-12y^2+14xy=0\)(1)
NX: y = 0 ko phải là nghiệm của hpt
Cùng chia cả 2 vế của (1) cho y2 ta đc
\(10.\left(\frac{x}{y}\right)^2-12+\frac{14x}{y}=0\)
Đặt \(\frac{x}{y}=a\)
\(\Rightarrow pt:10a^2+14a-12=0\)
Làm nốt
I
hệ đã cho tương đương với\(\hept{\begin{cases}11\left(x^2+xy-y^2\right)=11\\x^2-3xy+y^2=11\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+xy-y^2=1\\11\left(x^2+xy-y^2\right)=x^2-3xy+y^2\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+xy-y^2=1\\\left(x+2y\right)\left(5x-3y\right)=0\end{cases}}}\) (*)
Từ hệ (*) suy ra
\(\hept{\begin{cases}x^2+xy-y^2=1\\x^2+2y=0\end{cases}\left(I\right)}\)hoặc \(\hept{\begin{cases}x^2+xy-y^2=1\\\left(x+2y\right)\left(5x-3y\right)=0\end{cases}\left(II\right)}\)
Giải hệ (I) tìm được (c;y)=(2;-1);(-2;1)
Hệ (II) vô nghiệm
Vậy hệ phương trình có nghiệm (x;y)=(2;-1);(-2;1)