KA

Giải hệ PT:\(\hept{\begin{cases}x+y+x^2+y^2=8\\xy\left(x+1\right)\left(y+1\right)=12\end{cases}}\)

NT
23 tháng 11 2017 lúc 22:48

\(\Leftrightarrow\hept{\begin{cases}x\left(x+1\right)+y\left(y+1\right)=8\\x\left(x+1\right)y\left(y+1\right)=12\end{cases}}\)

đặt a=x(x+1);b=y(y+1)

\(\Leftrightarrow\hept{\begin{cases}a+b=8\\ab=12\end{cases}}\)

Bình luận (0)
PD
23 tháng 11 2017 lúc 22:51

bài này dễ mà bạn

\(\hept{\begin{cases}x+y+x^2+y^2=8\\x\left(x+1\right)y\left(y+1\right)=12\end{cases}}\)

suy ra \(\hept{\begin{cases}x\left(x+1\right)+y\left(y+1\right)=8\\x\left(x+1\right)y\left(y+1\right)=12\end{cases}}\)

sau đó bạn Đặt a=x(x+1); b=y(y+1)

phương trình trở thành\(\hept{\begin{cases}a+b=8\\ab=12\end{cases}}\)

dễ dàng giải dc a=6 ; b=2 nha

ra a va b rồi bạn tự tìm x và y nha

nhớ k đúng nha

Bình luận (0)

Các câu hỏi tương tự
TB
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
TZ
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết