NA

giải hệ pt \(\hept{\begin{cases}x^2-y^2+x-y=5\\x^3-x^2y-xy^2+y^3=6\end{cases}}\)

YN
13 tháng 12 2018 lúc 12:02

\(x^2-y^2+x-y=5\)\(\Leftrightarrow\left(x^2-y^2\right)+\left(x-y\right)=5\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=5\)

\(\Leftrightarrow\left(x-y\right)\left(x-y+1\right)=5\)

Bình luận (0)
YN
13 tháng 12 2018 lúc 12:07

\(x^3-x^2y-xy^2+y^3=6\)

\(\Leftrightarrow\left(x^3+y^3\right)-\left(x^2y+xy^2\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-xy\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-2xy+y^2\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2=6\)

Bình luận (0)
HT
27 tháng 9 2019 lúc 21:40

6x3−x2yxy2+y3=6

\Leftrightarrow\left(x^3+y^3\right)-\left(x^2y+xy^2\right)=6⇔(x3+y3)−(x2y+xy2)=6

\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=6⇔(x+y)(x2−xy+y2)−xy(x+y)=6

\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-xy\right)=6⇔(x+y)(x2−xy+y2−xy)=6

\Leftrightarrow\left(x+y\right)\left(x^2-2xy+y^2\right)=6⇔(x+y)(x2−2xy+y2)=6

\Leftrightarrow\left(x+y\right)\left(x-y\right)^2=6⇔(x+y)(xy)2=6

Bình luận (0)
LM
4 tháng 5 2020 lúc 21:01

6 nha bạn

Bình luận (0)
 Khách vãng lai đã xóa
LT
4 tháng 5 2020 lúc 21:02

tôi ko biết

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LC
Xem chi tiết
H24
Xem chi tiết
PA
Xem chi tiết
LM
Xem chi tiết
LM
Xem chi tiết
NH
Xem chi tiết
LC
Xem chi tiết
H24
Xem chi tiết
CT
Xem chi tiết