\(x^2-y^2+x-y=5\)\(\Leftrightarrow\left(x^2-y^2\right)+\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x-y+1\right)=5\)
\(x^3-x^2y-xy^2+y^3=6\)
\(\Leftrightarrow\left(x^3+y^3\right)-\left(x^2y+xy^2\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-xy\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-2xy+y^2\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2=6\)
6x3−x2y−xy2+y3=6
\Leftrightarrow\left(x^3+y^3\right)-\left(x^2y+xy^2\right)=6⇔(x3+y3)−(x2y+xy2)=6
\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=6⇔(x+y)(x2−xy+y2)−xy(x+y)=6
\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-xy\right)=6⇔(x+y)(x2−xy+y2−xy)=6
\Leftrightarrow\left(x+y\right)\left(x^2-2xy+y^2\right)=6⇔(x+y)(x2−2xy+y2)=6
\Leftrightarrow\left(x+y\right)\left(x-y\right)^2=6⇔(x+y)(x−y)2=6