Giải hệ phương trình: \(\hept{\begin{cases}x+y+z=12\\ax+5y+4z=46\\5x+ay+3z=38\end{cases}}\) (với a là tham số )
giải hệ pt 3 ẩn \(\int^{x+y+z=12}_{\int^{ax+5y+4z=46}_{5x+ay+3z=38}}\)
Giải hệ phương trình: \(\hept{\begin{cases}ax+y+z=a^2\\x+ay+z=3a\\x+y+az=2\end{cases}}\) ( a là tham số)
Giải hệ phương trình với a là tham số:
\(\hept{\begin{cases}ax+y+z=a^2\\x+ay+z=3a\\x+y+az=2\end{cases}}\)
GIẢI GIÚP MÌNH BÀI TOÁN NÀY ĐI Ạ!
Tìm nghiệm nguyên của hệ phương trình
\(\hept{\begin{cases}xy=x+y-z\\xz=2\left(x-y+z\right)\\yz=3\left(y-x+z\right)\end{cases}}\)
Tìm nghiệm nguyên dương của hệ phương trình
\(\hept{\begin{cases}x=5y+3\\x=11z+7\end{cases}}\)(x,y,z nhỏ nhất)
\(\hept{\begin{cases}x+2y+3z=20\\3x+5y+4z=37\end{cases}}\)(x,y,z nhỏ nhất)
Cho hệ phương trình :\(\hept{\begin{cases}ax-y=2a\\x-ay=3+a\end{cases}}\)(a là tham số )
a) giải hệ phương trình theo a. Áp dụng tìm nghiệm khi a =\(1-\sqrt{2}\)
b) Tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn \(x+y=\frac{a^2-5}{a-1}\)
c) Tìm a \(\in\)Z để hệ phương trình có nghiệm duy nhất (x;y) nguyên . Tìm giá trị các nghiệm nguyên đó
giải hệ pt a)2x+3y=5 và 4x-5y=1
b)xy-x-y=3 và x^2+y^2-xy=1
c)x+2y+3z=4 và 2x+3y-4z=-3 và 4x+y-z=-4
TÌM NGHIỆM NGUYÊN CỦA HỆ PHƯƠNG TRÌNH
1, \(\hept{\begin{cases}xy=x+y+z\\xz=2\left(x-y+z\right)\\yz=3\left(y-x+z\right)\end{cases}}\)
TÌM NGHIỆM NGUYÊN DƯƠNG CỦA HỆ PHƯƠNG TRÌNH
1, \(\hept{\begin{cases}x=5y+3\\x=11z+7\end{cases}}\)(x, y, z nhỏ nhất)
2,\(\hept{\begin{cases}x+2y+3z=20\\3x+5y+4z=37\end{cases}}\)(x, y, z nhỏ nhất)
3, \(\hept{\begin{cases}z+y=x+10\\yz=10x+1\end{cases}}\)
4, \(\hept{\begin{cases}x+y+z=100\\5x+3y+\frac{z}{3}=100\end{cases}}\)
GIẢI PHƯƠNG TRÌNH
1, \(x^2-2x=2\sqrt{2x-1}\)
2,\(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)
MỌI NGƯỜI GIẢI GIÚP MÌNH VỚI
LÀM GIÚP MÌNH Ạ!!! MAI MÌNH PHẢI KIỂM TRA RỒI!!!!
Tìm nghiệm nguyên của hệ phương trình
\(\hept{\begin{cases}xy=x+y-z\\xz=2\left(x-y+z\right)\\yz=3\left(y-x+z\right)\end{cases}}\)
Tìm nghiệm nguyên dương của hệ phương trình
\(\hept{\begin{cases}x=5y+3\\x=11z+7\end{cases}}\)(x,y,z nhỏ nhất)
\(\hept{\begin{cases}x+2y+3z=20\\3x+5y+4z=37\end{cases}}\)(x,y,z nhỏ nhất)