Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Chương III - Hệ hai phương trình bậc nhất hai ẩn

TN

Giải hệ phương trình:\(\left\{{}\begin{matrix}\sqrt{2x+3}+\sqrt{4-y}=4\\\sqrt{2y+3}+\sqrt{4-x}=4\end{matrix}\right.\)

NL
22 tháng 2 2019 lúc 19:54

ĐKXĐ: \(-\dfrac{3}{2}\le x;y\le4\)

\(\Leftrightarrow\sqrt{2x+3}-\sqrt{2y+3}+\sqrt{4-y}-\sqrt{4-x}=0\)

\(\Leftrightarrow\dfrac{2\left(x-y\right)}{\sqrt{2x+3}+\sqrt{2y+3}}+\dfrac{x-y}{\sqrt{4-y}+\sqrt{4-x}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(\dfrac{2}{\sqrt{2x+3}+\sqrt{2y+3}}+\dfrac{1}{\sqrt{4-y}+\sqrt{4-x}}\right)=0\)

\(\Leftrightarrow x-y=0\) (do \(\dfrac{2}{\sqrt{2x+3}+\sqrt{2y+3}}+\dfrac{1}{\sqrt{4-y}+\sqrt{4-x}}>0\))

\(\Rightarrow x=y\)

Thay vào pt trên:

\(\sqrt{2x+3}+\sqrt{4-x}=4\Leftrightarrow2x+3+4-x+2\sqrt{\left(2x+3\right)\left(4-x\right)}=16\)

\(\Leftrightarrow2\sqrt{12+5x-2x^2}=9-x\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\4\left(12+5x-2x^2\right)=\left(9-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\9x^2-38x+33=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3;y=3\\x=\dfrac{11}{9};y=\dfrac{11}{9}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
KB
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
AJ
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết