Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
giải hệ phương trình:\(\hept{\begin{cases}2x^2+4x+y^3+3=0\\x^2y^3+y=2x\end{cases}}\)
Giải hệ phương trình bằng phương pháp cộng
1) \(\hept{\begin{cases}2x+y=5\\3x+5y=4\end{cases}}\)
2) \(\hept{\begin{cases}x-2y=1\\3x+4y=3\end{cases}}\)
3) \(\hept{\begin{cases}x-y=3\\4x+3y=5\end{cases}}\)
4) \(\hept{\begin{cases}4x+3y=2\\2x-2y=1\end{cases}}\)
Bài 1: Giải hệ phương trình:
\(\hept{\begin{cases}x^2+32y^2=9y^4=\frac{272}{9}\\x^2+y^2+xy+4=3x+4y\end{cases}}\)
Bài 2: Giải hệ phương trình:
\(\hept{\begin{cases}x^2-xy-3y^2+3x-y-1=0\\xy+y^2-x+3y=0\end{cases}}\)
Bài 3: Giải hệ phương trình:
\(\hept{\begin{cases}x^2+3xy-9y^2+23y-17=0\\x^2-2xy+3y^2-6y-3=0\end{cases}}\)
Ai nhanh và đúng mình sẽ cho đúng và thêm bạn bè nhé. Thanks! Làm ơn giúp mình !!! PLEASE !!!
Giải hệ phương trình: \(\hept{\begin{cases}x^3-\left(2y^4+2y^3-3x^2y\right)\sqrt{2y-1}=0\\\sqrt[3]{5-x}-2y^3=2y^2+\sqrt{5x-4}-4x-3\end{cases}}\)
giải hệ phương trình
a,\(\hept{\begin{cases}2x^2+xy=3x\\2y^2+xy=3y\end{cases}}\)b,\(\hept{\begin{cases}y^2=x^3-3x^2+2x\\x^2=y^3-3y^2+2y\end{cases}}\)
c,\(\hept{\begin{cases}3x+y=\frac{1}{x^2}\\3y+x=\frac{1}{y^2}\end{cases}}\)
d,\(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
Giải hệ phương trình bằng phương pháp cộng
1) \(\hept{\begin{cases}x+y=5\\x+3y=1\end{cases}}\)
2) \(\hept{\begin{cases}3x-y=2\\x+y=6\end{cases}}\)
3) \(\hept{\begin{cases}x+2y=5\\3x-2y=3\end{cases}}\)
4) \(\hept{\begin{cases}2x-y=5\\2x+3y=1\end{cases}}\)
Giải các hệ phương trình sau:
a) \(\hept{\begin{cases}\left(x-y\right)^2+y^2=25\\\left(x+y\right)^2+x^2=26\end{cases}}\)
b) \(\hept{\begin{cases}x-y-xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
c) \(\hept{\begin{cases}2x^2+xy+3y^2-2y-4=0\\3x^2+5y^2+4x-12=0\end{cases}}\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
Giải hệ phương trình: \(\hept{\begin{cases}x+xy+y=2+3.\sqrt{2}\\x^2+y^2=6\end{cases}}\)
giải hệ phương trình
a,\(\hept{\begin{cases}\sqrt{3}x-2\sqrt{2y}=7\\\sqrt{2}x+3\sqrt{3y}=-2\sqrt{6}\end{cases}}\)
b,\(\hept{\begin{cases}\left(x-1\right)^2-\left(x+2\right)^2=9y\\\left(y-3\right)^2+\left(y+2\right)^2=5x\end{cases}}\)