NA

Giải hệ phương trình với x<0.

\(\hept{\begin{cases}2x^2-y^3+2xy+2xy^2=3\\x^2-y^3+xy=1\end{cases}}\)

NC
2 tháng 12 2019 lúc 15:11

\(\hept{\begin{cases}2x^2-y^3+2xy+2xy^2=3\left(1\right)\\x^2-y^3+xy=1\left(2\right)\end{cases}}\)

(2) <=> \(3x^2-3y^3+3xy=3\left(3\right)\)

Lấy (3) - (1):

\(x^2-2y^3+xy-2xy^2=0\)

<=> \(x\left(x+y\right)-2y^2\left(x+y\right)=0\)

<=> \(\left(x+y\right)\left(x-2y^2\right)=0\)

<=> \(\orbr{\begin{cases}x=-y\\x=2y^2\ge0\left(loại\right)\end{cases}}\)

Với x = -y thế vào (2) ta có: \(y^2-y^3-y^2=1\Leftrightarrow-y^3=1\Leftrightarrow y=-1\)

khi đó: x = 1

Vậy ( 1; -1 ) là nghiệm hệ phương trình.

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NL
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
GL
Xem chi tiết
ND
Xem chi tiết
NN
Xem chi tiết
KN
Xem chi tiết
LM
Xem chi tiết
SN
Xem chi tiết