Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1: Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+32y^2=9y^4+\frac{272}{9}\\x^2+y^2+xy+4=3x+4y\end{matrix}\right.\)
Bài 2: Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2-xy-3y^2+3x-y-1=0\\xy+y^2-x+3y=0\end{matrix}\right.\)
Bài 3: Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+3xy-9y^2+23y-17=0\\x^2-2xy+3y^2-6y-3=0\end{matrix}\right.\)
Ai nhanh và đúng mình sẽ cho đúng và thêm bạn bè nhé. Thanks! Làm ơn giúp mình !!! PLEASE !!!
Giải:
a) \(\hept{\begin{matrix}2x-3y=1\\4x-5y=2\end{matrix}}\)
b) \(\hept{\begin{matrix}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{matrix}}\)
giải hệ phương trình:
\(\hept{\begin{cases}\frac{1}{2}\left(x+2\right)\left(y+3\right)=\frac{1}{2}xy+50\\\frac{1}{2}\left(x-2\right)\left(y-2\right)=\frac{1}{2}xy-32\end{cases}}\)
Cho hệ phương trình:
\(\left\{{}\begin{matrix}\left(a-1\right)x+y=a\\x+\left(a-1\right)y=2\end{matrix}\right.\)
a) Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào a
b) Tìm các giá trị của a thoả mãn \(6x^2-17y=7\)
Giải hệ phương trình \(\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{cases}}\)
a ) Tìm tọa độ giao điểm của đường thẳng d : y = - x + 2 và Parabol : y = x2
b ) Cho hệ phương trình : \(\left\{{}\begin{matrix}4x+ay=b\\x-by=a\end{matrix}\right.\) . Tìm a và b để hệ đã cho có nghiệm duy nhất ( x , y ) = ( 2 : -1 )
Giải hệ phương trình :
\(\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{cases}}\)
Giải các hệ phương trình sau:
a) \(\hept{\begin{cases}\left(x-y\right)^2+y^2=25\\\left(x+y\right)^2+x^2=26\end{cases}}\)
b) \(\hept{\begin{cases}x-y-xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
c) \(\hept{\begin{cases}2x^2+xy+3y^2-2y-4=0\\3x^2+5y^2+4x-12=0\end{cases}}\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
Giải hệ phương trình: \(\hept{\begin{cases}x+xy+y=2+3.\sqrt{2}\\x^2+y^2=6\end{cases}}\)