Violympic toán 9

TH

Giải hệ phương trình

\(\left\{{}\begin{matrix}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\\2x^2+y=1\end{matrix}\right.\)

NL
5 tháng 10 2019 lúc 11:01

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{xz+yz+z^2}=0\)

\(\Leftrightarrow\left(x+y\right)\left(xy+yz+zx+z^2\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

Thay vào pt đầu và cuối

Bình luận (0)

Các câu hỏi tương tự
BL
Xem chi tiết
NH
Xem chi tiết
LS
Xem chi tiết
AR
Xem chi tiết
H24
Xem chi tiết
AR
Xem chi tiết
TH
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết