tìm m ∈ Z để hệ có nghiệm duy nhất là nghiệm duy nhất là nguyên
a)\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}mx-y=1\\x+4\left(m+1\right)y=4m\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}mx+y-3=3\\x+my-2m+1=0\end{matrix}\right.\)
Bài 1: Cho hệ phương trình \(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\) (m là tham số). Tìm các giá trị tham số m để hệ phương trình:
a) Có nghiệm duy nhất
b) Vô nghiệm
c) Vô số nghiệm
Bài 2: Cho hệ phương trình \(\left\{{}\begin{matrix}x-\left(m+1\right)y=1\\4x-y=-2\end{matrix}\right.\) (m là tham số). Tìm các giá trị m nguyên để hệ phương trình có nghiệm duy nhất (x, y) sao cho x và y nguyên.
Tìm m nguyên để hệ phương trình sau có nghiệm duy nhất là nghiệm nguyên
a)\(\left\{{}\begin{matrix}mx+2y=m+1\\2x+my=2m-1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(2m+1\right)x+y=2m-2\\m^2x-y=m^2-3m\end{matrix}\right.\)
Trong đó \(m\in Z,m\ne-1\). Xác định m để hệ phương trình có nghiệm nguyên
bài 1:
tìm m để hpt sau vô nghiệm \(\left\{{}\begin{matrix}x+my=1\\mx+y=2m\end{matrix}\right.\)
bài 2cho hpt\(\left\{{}\begin{matrix}mx-2y=1\\x+ny=-2\end{matrix}\right.\)có nghiệm(x;y).tìm m để hpt trên có nghiệm thỏa mãn x+y=1
tìm m để hpt sau có vô số nghiệm \(\left\{{}\begin{matrix}mx-y=1\\-x+y=-m\end{matrix}\right.\)
Cho hệ phương trình: \(\left\{{}\begin{matrix}mx+y=2m\left(1\right)\\x-y=-1\left(2\right)\end{matrix}\right.\)Tìm số nguyên m sao cho hệ phương trình có nghiệm duy nhất x và y đều là số nguyên.
\(\left\{{}\begin{matrix}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{matrix}\right.\)
Chứng minh rằng với mọi m hệ luôn có nghiệm duy nhất (x ; y). Tìm m sao cho P=xy+x+2y đạt giá trị lớn nhất
Tìm giá trị của m để hệ phương trình \(\left\{{}\begin{matrix}m\left(x-y\right)=m^4+1\\\left(m^2-2m\right)x+my=m^3-m^2-2\end{matrix}\right.\)có nghiệm duy nhất
\(\left\{{}\begin{matrix}x+2\left|y-2\right|=3\\2x-\left|y-2\right|=1\end{matrix}\right.\)
giải hệ phương trình sau