giải hệ phương trình:
a)\(\hept{\begin{cases}x^2+y^2+z^2=8\\xy+yz+xz=4\\x+y+z=4\end{cases}}\)
b)\(\hept{\begin{cases}x^4+x^3y+9y=y^3x+x^2y^2\\xy^3-x^4=7\end{cases}}\).
Giải hệ phương trình\(\hept{\begin{cases}xy+yz+xz=x^2+y^2+z^2\\x^2+y^2+z^2=3\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}x^2+xy+xz=48\\xy+y^2+yz=12\\xz+yz+z^2=84\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}x+yz=2\\y+xz=2\\z+xy=2\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}x^2+y^2+xy=7\\x^2+z^2+xz=4\\y^2+z^2+yz=1\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}x^2+yz=y+z\\y^2+zx=z+x\\z^2+xy=x+y\end{cases}}\)
Giải hệ phương trình : \(\hept{\begin{cases}x^2+y^2+z^2=xy+yz+xz\\^{2001}+y^{2001}+z^{2001}=3^{2002}\end{cases}}\)
Giải hệ phương trình:
a)\(\hept{\begin{cases}\frac{xy}{x+y}=\frac{8}{3}\\\frac{yz}{y+z}=\frac{12}{5}\\\frac{zx}{z+x}=\frac{24}{7}\end{cases}}\)
b)\(\hept{\begin{cases}\frac{2x^2}{1+x^2}=y\\\frac{2y^2}{1+y^2}=z\\\frac{2z^2}{1+z^2}=x\end{cases}}\)
c)\(\hept{\begin{cases}\frac{xy}{x+y}=2-z\\\frac{yz}{y+z}=2-x\\\frac{zx}{z+x}=2-y\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}x^2+y^2+z^2=1\\xy+yz+xz=1\end{cases}}\)