Đặt \(\hept{\begin{cases}x+1=a\\y=b\end{cases}}\)
Thì ta có hệ ban đầu
\(\Leftrightarrow\hept{\begin{cases}1\left(a-1\right)\left(b^2+6\right)=b\left(a^2+1\right)\left(3\right)\\\left(b-1\right)\left(a^2+6\right)=a\left(b^2+1\right)\left(4\right)\end{cases}}\)
Trừ vế theo vế rồi thu gọn ta được
\(\left(a-b\right)\left(a+b-2ab+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\left(5\right)\\a+b-2ab+7=0\left(6\right)\end{cases}}\)
TH (5) thay vào (3) ta được
(a - 1)(a2 + 6) = a(a2 + 1)
<=> a2 - 5a + 6 = 0
\(\orbr{\begin{cases}a=2\\a=3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
TH (6) ta lấy (3) và (4) trừ vế theo vế rồi rút gọn ta được
\(\left(a-\frac{5}{2}\right)^2+\left(b-\frac{5}{2}\right)^2=\frac{1}{2}\)
Kết hợp với (6) ta có hệ pt đối xứng loại I giải ra sẽ có nghiệm là
(a,b) = (2,2;3,3;2,3;3,2)
Giải bằng điện thoại nên dễ sai sót lắm bạn kiểm tra lại giúp m nhé
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình