Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NN

Giải hệ phương trình: \(\hept{\begin{cases}x+y-z=5\\10x+10y+2xy-z^2+25=0\end{cases}}\)

CH
4 tháng 12 2017 lúc 16:40

\(\hept{\begin{cases}x+y-z=5\\10x+10y+2xy-z^2+25=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=x+y-5\\10x+10y+2xy-z^2+25=0\end{cases}}\)

Thế phương trình trên vào phương trình dưới, ta có:

\(10x+10y+2xy-\left(x+y-5\right)^2+25=0\)

\(\Leftrightarrow10x+10y+2xy-\left(x^2+y^2+25-10x-10y+2xy\right)+25=0\)

\(\Leftrightarrow-x^2-y^2+20x+20y=0\)

\(\Leftrightarrow-x^2+20x=y^2-20y\)

Dựa vào tương giao hai đồ thị, ta thấy phương trình trên có 2 cặp nghiệm  (0; 0 ) hoặc (20;20)

Với x = 0, y = 0, ta có z = -5.

Với x = 20, y = 20, ta có x = 35

Bình luận (0)

Các câu hỏi tương tự
PP
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
MK
Xem chi tiết
LH
Xem chi tiết
LD
Xem chi tiết
TA
Xem chi tiết
TX
Xem chi tiết
NT
Xem chi tiết