NL

Giải hệ phương trình \(\hept{\begin{cases}x^2\\y^2+8=x^2y+2y\end{cases}+8=xy^2+2x}\)

NC
29 tháng 5 2020 lúc 22:20

\(\hept{\begin{cases}x^2+8=xy^2+2x\left(1\right)\\y^2+8=x^2y+2y\left(2\right)\end{cases}}\)

Xét: \(x^2+8=xy^2+2x\)

<=> \(x\left(y^2+2\right)=x^2+8\ge8>0\)mà \(y^2+2>0\) với mọi x; y 

=> \(x>0\)tương tự \(y>0\)(3) 

Xét \(x^2+8=xy^2+2x\)

<=> \(y^2+2=x+\frac{8}{x}\ge2\sqrt{8}\)<=> \(y^2\ge2\sqrt{8}-2\)

<=> \(\orbr{\begin{cases}y\ge\sqrt{2\sqrt{8}-2}\\y\le-\sqrt{2\sqrt{8}-2}\end{cases}}\)tương tự \(\orbr{\begin{cases}x\ge\sqrt{2\sqrt{8}-2}\\x\le-\sqrt{2\sqrt{8}-2}\end{cases}}\)(4) 

Từ (3) và (4) => \(x;y\ge\sqrt{2\sqrt{8}-2}\)(@@)

Lấy (1) - ( 2) ta có: \(x^2-y^2=xy^2-x^2y+2x-2y\)

<=> \(\left(x-y\right)\left(x+y\right)+xy\left(x-y\right)-2\left(x-y\right)=0\)

<=> \(\left(x-y\right)\left(x+y+xy-2\right)=0\)(5)

Với \(x;y\ge\sqrt{2\sqrt{8}-2}\) ta có: \(x+y+xy-2>0\)

Do đó: (5) <=> x = y 

Thế vào (1) ta có: \(x^3-x^2+2x-8=0\Leftrightarrow x=2\)thỏa mãn (@@) 

Vậy:...

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NL
Xem chi tiết
CN
Xem chi tiết
H24
Xem chi tiết
KA
Xem chi tiết
LC
Xem chi tiết
DT
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
TB
Xem chi tiết