HN

Giải hệ phương trình \(\hept{\begin{cases}\frac{3}{x^2+y^2-1}+\frac{2y}{x}=1\\x^2+y^2-\frac{2x}{y}=4\end{cases}}\) 

PA
28 tháng 11 2016 lúc 21:19

mk nghĩ giải theo cách này 

đặt \(x^2+y^2=a\) và \(\frac{x}{y}=b\) thì hpt trở thành 

\(\hept{\begin{cases}\frac{3}{a-1}+\frac{2}{b}=1\\a-2b=4\end{cases}}\)<=> \(\hept{\begin{cases}a=2b+4\\\frac{3}{2b-3}+\frac{2}{b}=1\end{cases}}\)<=> \(\hept{\begin{cases}2b^2-4b-6=0\\a=2b+4\end{cases}}< =>\hept{\begin{cases}\orbr{\begin{cases}b=3\\b=-1\end{cases}}\\a=2b+4\end{cases}}\)

đến đây cậu tự giải nốt nhé 

Bình luận (0)