PH

Giai he phuong trinh: \(\hept{\begin{cases}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{cases}}\)

Bài làm

Thep phương pháp đưa về đồng bậc, có:

\(\hept{\begin{cases}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{cases}}\)

\(\Rightarrow\left(4x^3-y\right)\left(-9\right)=\left(52x^2-82xy+21y^2\right)\left(x+2y\right)\)

\(\Leftrightarrow8x^3+2x^2y-13xy^2+3y^3=0\)

\(\Leftrightarrow\left(4x-y\right)\left(x-y\right)\left(2x+3y\right)=0\)

\(\Rightarrow\)4x - y = 0 hoặc x - y = 0 hoặc 2x + 3y = 0

\(\Leftrightarrow\)4x = y hoặc x = y hoặc 2x = -3y

Bạn thay từng trường hợp vào hệ phương trình nha thì bạn sẽ thấy x = y ( thỏa mãn )

<=> ( x,y ) = ( 1; 1 ) ; ( -1 ; -1 ) là nghiệm của hpt.

~ Do tối rồi nên mik không thay được, bạn thông cảm nha ~

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TT
Xem chi tiết
TD
Xem chi tiết
ND
Xem chi tiết
NX
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
HT
Xem chi tiết
MT
Xem chi tiết