NT

Giải hệ phương trình: \(\hept{\begin{cases}3xy^2=x^2+20\\3yx^2=y^2+20\end{cases}}\)

GL
13 tháng 2 2020 lúc 13:22

\(\hept{\begin{cases}3xy^2=x^2+20\left(1\right)\\3yx^2=y^2+20\left(2\right)\end{cases}}\)

Lấy (1) trừ (2) ta đựợc:

\(-3xy\left(x-y\right)=\left(x-y\right)\left(x+y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+3xy\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x+y=-3xy\end{cases}}\)

Với x=y 

\(\left(1\right)\Leftrightarrow3x^3=x^2+20\)

\(\Leftrightarrow3x^3-x^2-20=0\)(đến đây dùng casio là ra nghiệm nhé :P)

Với x+y=-3xy

\(\left(1\right)\Leftrightarrow y\left(-x-y\right)=x^2+20\)

\(\Leftrightarrow x^2+xy+y^2+20=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+20=0\)(vô lí)

Vậy........

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
BV
Xem chi tiết
BM
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
UN
Xem chi tiết
UN
Xem chi tiết
LC
Xem chi tiết