NN

Giải hệ phương trình: \(\hept{\begin{cases}2x^2+3xy+y^2=12\\x^2-xy+3y^2=11\end{cases}}\)

TL
12 tháng 5 2020 lúc 4:51

\(\hept{\begin{cases}2x^2+3xy+y^2=12\\x^2-xy+3y^2=11\end{cases}\Leftrightarrow\hept{\begin{cases}22x^2+3xy+11y^2=121\\x^2-xy+3y^2=121\end{cases}}}\)

\(\Rightarrow10x^2+45xy-25y^2=0\)

\(\Leftrightarrow\left(2x-y\right)\left(x+5y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{y}{2}\\x=-5y\end{cases}}\)

Với \(x=\frac{y}{2}\)ta được \(\hept{\begin{cases}x=1\\y=2\end{cases};\hept{\begin{cases}x=-1\\y=-2\end{cases}}}\)

Với x=-5y ta được \(\hept{\begin{cases}x=\frac{-5\sqrt{3}}{2}\\y=\frac{\sqrt{3}}{3}\end{cases};\hept{\begin{cases}x=\frac{5\sqrt{3}}{3}\\y=\frac{\sqrt{3}}{3}\end{cases}}}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
BQ
Xem chi tiết
LC
Xem chi tiết
LH
Xem chi tiết
NN
Xem chi tiết
LD
Xem chi tiết
HP
Xem chi tiết
LD
Xem chi tiết
LM
Xem chi tiết
Xem chi tiết