giải hệ phương trình gồm: x^2+y^2+xy=1; x^3+y^3+x+3y
trình bày cách giải hộ mik vs
1. Giải phương trình: \(\sqrt{x-2}+\sqrt{4-x}=\sqrt{2}\) .
2. Giải phương trình: \(4x^4-7x^3+9x^2-10x+4=0\).
3. Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2+y^2=3-xy\\x^4+y^4=2\end{matrix}\right.\) .
bài 1:giải hệ phương trình \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}}\)
Bài 2: giải hệ phương trình \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}}\)
Giải 2 hệ phương trình:
bài 1: 1: căn(xy) + căn(1-y)=căn(y) 2: 2 căn (xy-y)-căn(y)=-1
bài 2: 1: x^3-x=(x^2).y-2 2:căn[2.(căn(x^4+1)] - 5 căn(|x|)+căn(y)+2=0
Ai đúng mik tik!
ai giúp mình với, cả cách giải luôn nha, khó quá ko lm đc -_-
bài 1 cho hệ phương trình
\(\frac{1}{x-1}+\frac{m}{y-2}=2\)
\(\frac{2}{y-2}-\frac{3}{x-1}=-1\)
a/ giải hệ phương trình khhi m=1
b/ tìm m để hệ phương trình có ngiệm
bài 2 giải phương trình
\(y^2-2y+3=\frac{6}{x^2+2x+4}\)
bài 3 giải hệ phương trình
\(\left(^{x^2+xy+y^2}\right)\sqrt{x^2+y^2}=185\)
\(\left(x^2+xy+y^2\right)\sqrt{x^2+y^2}=65\)
Giải hệ phương trình: \(\hept{\begin{cases}x^2+y^2+xy=9\\x+y+xy=3\end{cases}}\)
Giải phương trình \(\sqrt[3]{x^2+2}+\sqrt[3]{4x^2+3x-2}=\sqrt[3]{3x^2+x+5}+\sqrt[3]{2x^2+x-5}\)
Giải phương trình \(3\left(x^2-x+1\right)=\left(x+\sqrt{x-1}\right)^2\)
giải/hệ/phương/trình:(x+1)(y-1)=xy-1
(x-3)(y-3)=xy-3
Giải hệ phương trình x^2+y^2+xy=7 và 9x^3=xy^2+70(x-y)
giải hệ phương trình :
(x^2+1)(y^2+1)=10
(x+y)(xy-1)=3