Giải hệ phương trình:
\(1.\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(2.\hept{\begin{cases}2x^3+2z^2+3z+3=0\\2y^3+2x^2+3x+3=0\\2z^3+2y^2+3y+3=0\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}x-3z^2x-3z+z^3=0\\y-3x^2y-3x+x^3=0\\z-3y^2z-3y+y^3=0\end{cases}}\)
Giải hệ phương trình sau\(\hept{\begin{cases}2y^3+2x^2+3x+3=0\\2z^3+2y^2+3y+3=0\\2x^3+2z^2+3z+3=0\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}2x^3+2y^2+3y+3=0\\2y^3+2z^2+3z+3=0\\2z^3+2x^2+3x+3=0\end{cases}}\)
Giải hệ phương trình :
a) \(\hept{\begin{cases}x^2+y^2=1\\x^9+y^9=1\end{cases}}\)
b)\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{z}=2014\\\frac{1}{3x+2y}+\frac{1}{3y+2z}+\frac{1}{3z+2x}=\frac{1}{x+2y+3z}+\frac{1}{y+2x+3x}+\frac{1}{z+2x+3y}\end{cases}}\)
Rút gọn: M = \(\frac{5x^5+4x^4+3x^3+2}{4x^4+3x^3+2x^2+z}+\frac{4y^4+3y^3+2y^2+y}{5y^5+4y^4+3y^3+2}+\frac{5y^5+4z^4+3z^3+2}{4z^4+3z^3+2z^2+z}\)
giải hệ phương trình:\(\hept{\begin{cases}x^3-3x-2=2-y\\y^3-3y-2=4-2z\\z^3-3z-2=6-3x\end{cases}}\)
giải hệ phương trình: \(\left\{{}\begin{matrix}x^3-3x=4-y\\y^3-3y=6-2z\\z^3-3z=8-3x\end{matrix}\right.\)
Giải hệ phương trình: \(\hept{\begin{cases}\sqrt{2x-3}+x=z^2-2z+3&\sqrt{2y-3}+y=x^2-2x+3&\sqrt{2x-5}+z=y^2-2y+3\end{cases}}\)