Hệ phương trình đối xứng

LT

giải hệ \(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{2x+y}=5\\x-y+\sqrt{2x+y}=1\end{matrix}\right.\)

HN
9 tháng 1 2018 lúc 11:17

Đặt \(\left\{{}\begin{matrix}\sqrt{7x+y}=a\\\sqrt{2x+y}=b\end{matrix}\right.\) thì ta có:

\(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{2x+y}=5\\5\left(x-y\right)+5\sqrt{2x+y}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\3a^2-8b^2+5b=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}a=12\\b=-7\end{matrix}\right.\)(l)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
XH
Xem chi tiết
LM
Xem chi tiết
KM
Xem chi tiết
KT
Xem chi tiết
TP
Xem chi tiết
DT
Xem chi tiết
NT
Xem chi tiết
DT
Xem chi tiết
NT
Xem chi tiết