\(A:29^{1023}=29^{6.170+3}=\left(29^6\right)^{170}.29^3\)
\(\equiv1^{170}.9\left(mod\text{ 10}\right)\)
\(\equiv9\)
Vậy chữ số tận cùng ...
\(B:117^{2046}=117^{4.511+2}=\left(117^4\right)^{511}.117^2\)
\(\equiv1^{511}.9\left(mod\text{ 10}\right)\)
\(\equiv9\)
\(C:2024^{2015}\)
\(\equiv4^{2015}\left(mod\text{ 10}\right)=4^{15.134+5}\)
\(\equiv4^{134}.4\left(mod10\right)=4^{15.9-1}.4\)
\(\equiv4^9\equiv4\left(mod10\right)\)
A=291023=292.511+1=292.511.29=(292)511.29=A1511.29=C1.29=B9
B=1172046=1174.511+2=(1174)511.1172=A1.B9=C9
C=20242015=20242.1007+2=(20242)1007.20242=A61007.B6=C6.B6=E6
Ko hiểu thì nói mk nhak