LN

giải giúp em vs ạ

cho tam giác ABC vuông tại A , có AB =6cm ,AC =8cm , Vẽ trung tuyến AM của tam giác ABC . Lấy N là đối xứng với A qua M 

a, Tính AM 

b, Tứ giác ABNC là hình gì ? Vi sao ?

c, Vẽ MI vuông góc với AC (I thuộc AC) .Lấy K đối xứng M qua I . Chứng minh AMCK là hình thoi 

giải thik các bước giải ạ 

 

H24
9 tháng 8 2021 lúc 16:06

a/ Xét △ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AM là đường trung tuyến của △ABC vuông tại A

\(\Rightarrow AM=MB=MC=\dfrac{BC}{2}\)

\(\Rightarrow AM=\dfrac{10}{2}=5\left(cm\right)\)

Vậy: \(AM=5cm\)

==========

b/ Tứ giác ABNC là hình chữ nhật vì:

- M là trung điểm của BC (gt) và AN (N đối xứng với A qua M)

⇒ ABNC là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành)

- ABNC có \(\hat{A}=90\text{°}\left(gt\right)\) 

Vậy: ABNC là hình chữ nhật (Hình bình hành có một góc vuông là hình chữ nhật)

==========

c/ Ta có:

\(IM=IK\left(gt\right);\hat{MIC}=90\text{°}\left(gt\right)\)

⇒AC là đường trung trực của MK \(\left(1\right)\)

- Mặt khác: 

-Xét △CIM và △AIM có:

 + \(\hat{MIC}=\hat{MIA}=90\text{°}\left(gt\right)\)

 + \(IM\text{ }chung\)

 +\(AM=MC\) (AM là trung tuyến của △ABC vuông tại A)

⇒ \(\text{△CIM = △AIM(c.h-c.g.v)}\)

\(\Rightarrow IA=IC\)Mà \(\hat{MIC}=90\text{°}\)

⇒MK là đường trung trực của AC \(\left(2\right)\)

Từ (1) và (2). Vậy: Tứ giác AMCK là hình thoi (Tứ giác có hai đường chéo là đường trung trực của nhau là hình thoi)

 

 

Bình luận (1)

Các câu hỏi tương tự
NN
Xem chi tiết
PP
Xem chi tiết
DM
Xem chi tiết
SC
Xem chi tiết
HA
Xem chi tiết
BT
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NV
Xem chi tiết