Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

JE

Giải phương trình

a) \(sin2x+\sqrt{2}sinx.sin2x=0\)

b) \(4sinx.cosx.cos2x-cos\frac{5x}{2}.sin\frac{3x}{2}=0\)

c) \(4sin3x+cosx-cos5x=0\)

d) \(2cos^2\left(x-\frac{\pi}{4}\right)+sin2x=0\)

e) \(sin\left(\frac{3\pi}{2}-sinx\right)=1\)

f) \(cos^2x-sin^2x+sin4x=0\)

NL
10 tháng 7 2020 lúc 17:40

a/

\(\Leftrightarrow sin2x\left(1+\sqrt{2}sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\1+\sqrt{2}sinx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sinx=-\frac{\sqrt{2}}{2}=sin\left(-\frac{\pi}{4}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

b/

\(\Leftrightarrow2sin2x.cos2x-\frac{1}{2}sin4x+\frac{1}{2}sinx=0\)

\(\Leftrightarrow sin4x-\frac{1}{2}sin4x+\frac{1}{2}sinx=0\)

\(\Leftrightarrow sin4x=-sinx=sin\left(-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}4x=-x+k2\pi\\4x=\pi+x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{5}\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\)

Bình luận (0)
NL
10 tháng 7 2020 lúc 17:44

c/

\(\Leftrightarrow4sin3x+2sin3x.sin2x=0\)

\(\Leftrightarrow sin3x\left(2+sin2x\right)=0\)

\(\Leftrightarrow sin3x=0\) ( do \(2+sin2x>0;\forall x\))

\(\Leftrightarrow3x=k\pi\)

\(\Rightarrow x=\frac{k\pi}{3}\)

d/

\(2cos^2\left(x-\frac{\pi}{4}\right)+sin2x=0\)

\(\Leftrightarrow1+cos\left(2x-\frac{\pi}{2}\right)+sin2x=0\)

\(\Leftrightarrow1+sin2x+sin2x=0\)

\(\Leftrightarrow sin2x=-\frac{1}{2}=sin\left(-\frac{\pi}{6}\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
10 tháng 7 2020 lúc 17:50

e/

\(sin\left(\frac{3\pi}{2}-sinx\right)=1\)

\(\Leftrightarrow\frac{3\pi}{2}-sinx=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow sinx=\pi+k2\pi\)

\(-1\le sinx\le1\Rightarrow-1\le\pi+k2\pi\le1\)

\(\Rightarrow\) Không tồn tại k nguyên thỏa mãn

Pt đã cho vô nghiệm

f/

\(cos^2x-sin^2x+sin4x=0\)

\(\Leftrightarrow cos2x+2sin2x.cos2x=0\)

\(\Leftrightarrow cos2x\left(1+2sin2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin2x=-\frac{1}{2}=sin\left(-\frac{\pi}{6}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
QN
Xem chi tiết
NL
Xem chi tiết
NN
Xem chi tiết
TH
Xem chi tiết
QN
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
SB
Xem chi tiết