Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

JE

giải các pt

a) \(cos^4x-sin^4x=sin4x\)

b) \(2cos^2x-1=sin6x\)

c) \(2cos^2x-2=sinx.cos3x\)

d) \(cos^4x+sin^4x=1+\frac{1}{2}sin4x\)

NL
13 tháng 7 2020 lúc 13:13

\(\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)=sin4x\)

\(\Leftrightarrow cos^2x-sin^2x=sin4x\)

\(\Leftrightarrow cos2x=sin4x=cos\left(\frac{\pi}{2}-4x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-4x+k2\pi\\2x=4x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+\frac{k\pi}{3}\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)

\(2cos^2x-1=sin6x\)

\(\Leftrightarrow cos2x=sin6x=cos\left(\frac{\pi}{2}-6x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-6x+k2\pi\\2x=6x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{16}+\frac{k\pi}{4}\\x=\frac{\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)

Bình luận (0)
NL
13 tháng 7 2020 lúc 13:16

\(2\left(cos^2x-1\right)=sinx.cos3x\)

\(\Leftrightarrow-2sin^2x=sinx.cos3x\)

\(\Leftrightarrow sinx.cos3x+2sin^2x=0\)

\(\Leftrightarrow sinx\left(cos3x+2sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos3x+2sinx=0\left(1\right)\end{matrix}\right.\)

Bạn có ghi nhầm đề ko nhỉ, pt (1) dù giải được nhưng khá khó đấy, phải vận dụng công thức nhân 3 và nghiệm ko hề đẹp

Bình luận (0)
NL
13 tháng 7 2020 lúc 13:20

\(cos^4x+sin^4x=1+\frac{1}{2}sin4x\)

\(\Leftrightarrow\left(cos^2x+sin^2x\right)^2-2\left(sinx.cosx\right)^2=1+\frac{1}{2}sin4x\)

\(\Leftrightarrow1-\frac{1}{2}sin^22x=1+\frac{1}{2}sin4x\)

\(\Leftrightarrow sin4x+sin^22x=0\)

\(\Leftrightarrow2sin2x.cos2x+sin^22x=0\)

\(\Leftrightarrow sin2x\left(2cos2x+sin2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=0\Rightarrow x=\frac{k\pi}{2}\\2cos2x+sin2x=0\left(1\right)\end{matrix}\right.\)

Xét (1)

\(\Leftrightarrow\frac{1}{\sqrt{5}}sin2x+\frac{2}{\sqrt{5}}cos2x=0\)

Đặt \(cosa=\frac{1}{\sqrt{5}}\) với \(a\in\left[0;\pi\right]\)

\(\Rightarrow sin2x.cosa+cos2x.sina=0\)

\(\Leftrightarrow sin\left(2x+a\right)=0\)

\(\Rightarrow2x+a=k\pi\Rightarrow x=-\frac{a}{2}+\frac{k\pi}{2}\)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
JE
Xem chi tiết
ND
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
TH
Xem chi tiết
NN
Xem chi tiết