a, Ta có : \(\frac{392-x}{32}+\frac{390-x}{34}+\frac{388-x}{36}+\frac{386-x}{38}+\frac{384-x}{40}=-5\)
=> \(\frac{392-x}{32}+1+\frac{390-x}{34}+1+\frac{388-x}{36}+1+\frac{386-x}{38}+1+\frac{384-x}{40}+1=-5+5=0\)
=> \(\frac{424-x}{32}+\frac{424-x}{34}+\frac{424-x}{36}+\frac{424-x}{38}+\frac{424-x}{40}=0\)
=> \(\left(424-x\right)\left(\frac{1}{32}+\frac{1}{34}+\frac{1}{36}+\frac{1}{38}+\frac{1}{40}\right)=0\)
=> \(424-x=0\)
=> \(x=424\)
Vậy phương trình có nghiệm là x = 424 .
b, Ta có : \(\frac{x+1}{2014}+\frac{x+3}{2012}=\frac{x+5}{2010}+\frac{x+6}{2009}\)
=> \(\frac{x+1}{2014}+1+\frac{x+3}{2012}+1=\frac{x+5}{2010}+1+\frac{x+6}{2009}+1\)
=> \(\frac{x+2015}{2014}+\frac{x+2015}{2012}=\frac{x+2015}{2010}+\frac{x+2015}{2009}\)
=> \(\frac{x+2015}{2014}+\frac{x+2015}{2012}-\frac{x+2015}{2010}-\frac{x+2015}{2009}=0\)
=> \(\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2010}-\frac{1}{2009}\right)=0\)
=> \(x+2015=0\)
=> \(x=-2015\)
Vậy phương trình có nghiệm là x = -2015 .
a) \(\frac{392-x}{32}+\frac{390-x}{34}+\frac{388-x}{36}+\frac{386-x}{38}+\frac{384-x}{40}=-5\)
<=> \(\frac{392-x}{32}+1+\frac{390-x}{34}+1+\frac{388-x}{36}+1+\frac{386-x}{38}+1+\frac{384-x}{40}=0\)
<=> \(\frac{424-x}{32}+\frac{424-x}{34}+\frac{424-x}{36}+\frac{424-x}{40}=0\)
<=> \(\left(424-x\right)\left(\frac{1}{32}+\frac{1}{34}+\frac{1}{36}+\frac{1}{40}\right)=0\)
<=> 424 - x = 0
<=> x = 424
Vậy S = {424}
b) \(\frac{x+1}{2014}+\frac{x+3}{2012}=\frac{x+5}{2010}+\frac{x+6}{2009}\)
<=> \(\left(\frac{x+1}{2014}+1\right)+\left(\frac{x+3}{2012}+1\right)=\left(\frac{x+5}{2010}+1\right)+\left(\frac{x+6}{2009}+1\right)\)
<=> \(\frac{x+2015}{2014}+\frac{x+2015}{2012}=\frac{x+2015}{2010}+\frac{x+2015}{2009}\)
<=> \(\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2010}-\frac{1}{2009}\right)=0\)
<=> x + 2015 = 0
<=> x= -2015
Vậy S = {-2015}