Bài 5: Công thức nghiệm thu gọn

TM

giải các phương trình sau a. \(4x^2\) - 12x - 7=0

b. \(x^2-4x+2=0\)

c. \(x^2-2\sqrt{3}x+2=0\)

d. \(\left(x-3\right)\left(x+3\right)+x\left(x+5\right)+6=0\)

e. \(x^2-\left(1+\sqrt{3}\right)x+\sqrt{3}=0\)

NT
19 tháng 5 2020 lúc 20:59

giải các phương trình sau

a. 4x2 - 12x - 7=0

\(\bigtriangleup = b^2 -4.a.c\)

\(=(-12)^2 -4.4.(-7) \)

\(= 256\)

\(\bigtriangleup > 0\) nên phương trình có hai nghiệm phân biệt :

\(\)\(x_1 =\dfrac{-b+\sqrt{\bigtriangleup}}{2a} \) \(= \dfrac{-(-12)+ \sqrt{256}}{2.4}\) \(= \dfrac{7}{2}\)

\(x_2 =\dfrac{-b-\sqrt{\bigtriangleup}}{2a} = \) \(\dfrac{-(-12)- \sqrt{256}}{2.4} \) \( = \dfrac{-1}{2}\)

Vậy phương trình có nghiệm \(x_1 =\dfrac{7}{2} ; x_2 = \dfrac{-1}{2}\)

b. x2−4x+2=0

\(\bigtriangleup = b^2 -4.a.c\)\(\bigtriangleup = b^2 -4.a.c\)

= \((-4)^2 -4.1.2\)

= \(8\)

\(\bigtriangleup > 0 \) nên phương trình có hai nghiệm phân biệt :

\(x_1 =\dfrac{-b+\sqrt{\bigtriangleup}}{2a} \) \(= \dfrac{-(-4) + \sqrt{8}}{2.1}\)= \(2+\sqrt{2}\)

\(x_2 =\dfrac{-b-\sqrt{\bigtriangleup}}{2a} = \)\(\dfrac{-(-4) - \sqrt{8}}{2.1}\) \(= 2-\sqrt{2}\)

Vậy phương trình có nghiệm \(x_1 = 2+\sqrt{2} ; x_2 = 2 -\sqrt{2}\)

c. x2−23x+2=0

\(\bigtriangleup = b^2 -4.a.c\)\(\bigtriangleup = b^2-4.a.c\)

= \((-2\sqrt{3})^2 - 4.1.2\)

= \(4\)

\(\bigtriangleup > 0 \) nên phương trình có hai nghiệm phân biệt :

\(x_1 =\dfrac{-b+\sqrt{\bigtriangleup}}{2a} \) \( = \dfrac{-(-2\sqrt{3}) + \sqrt{4}}{2.1} \) \(= 1+\sqrt{3}\)

\(x_2 =\dfrac{-b-\sqrt{\bigtriangleup}}{2a} = \) \(\dfrac{-(-2\sqrt{3}) - \sqrt{4}}{2.1} \) \(= -1 +\sqrt{3}\)

Bình luận (0)
QD
20 tháng 5 2020 lúc 13:19

d. (x-3)(x+3)+x(x+5)+6=0

<=> x2+3x-3x-9+x2+5x+6=0

<=> 2x2+5x-3=0

(a=2; b=5; c=-3)

\(\Delta\)=(5)2-4.(2).(-3)

\(\Delta\)=49

\(\Delta\)>0 => phương trình có 2 nghiệm phân biệt

\(x_1=\frac{-\left(5\right)+\sqrt{49}}{2.\left(2\right)}=\frac{1}{2}\)

\(x_2=\frac{-\left(5\right)-\sqrt{49}}{2.\left(2\right)}=-3\)

Vậy phương trình có nghiệm (x1;x2)=(1/2;-3)

e. \(x^2-\left(1+\sqrt{3}\right)x+\sqrt{3}=0\)

\(\Leftrightarrow x^2-x-\sqrt{3}x+\sqrt{3}=0\)

\(\Leftrightarrow x^2-\left(1+\sqrt{3}\right)x+\sqrt{3}=0\)

(a=1; b= -(1+\(\sqrt{3}\)) ; c=\(\sqrt{3}\))

\(\Delta\)=(-1-\(\sqrt{3}\))2-4.(1).(\(\sqrt{3}\))

\(\Delta\)=\(4-2\sqrt{3}\)

\(\Delta\)>0 => phương trình có 2 nghiệm phân biệt

\(x_1=\frac{-\left(-1-\sqrt{3}\right)+\sqrt{4-2\sqrt{3}}}{2.\left(1\right)}=\sqrt{3}\)

\(x_2=\frac{-\left(-1-\sqrt{3}\right)-\sqrt{4-2\sqrt{3}}}{2.\left(1\right)}=1\)

Vậy phương trình có nghiệm (x1;x2)=(\(\sqrt{3}\);1)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
SK
Xem chi tiết
LN
Xem chi tiết
TL
Xem chi tiết
SK
Xem chi tiết
HS
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết